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Abstract -The fracture of cementitious materi,tls is governed by its softening behavior. When steel
fibers are incorporated into concrete to improve its toughness, the softening behavior can be
predicted in terms of the composite micro-parameters including the properties of fiber. matrix and
interface as well as fiber size, length, distribution and volume fraction. In this paper, the bridging
force provided by a steel fiber at any arbitrary angle to the crack is first modeled in terms of the
micro-parameters. For a given fiber distribution. the averaged crack bridging force is then derived
and employed to obtain the composite softening behavior. The model is verified at both the
microscopic and macroscopic levels wilh experimental results from the fiber pull-out test and the
four-point beam bending test. With the model, numerical simulations are carried out to study the
effect of various parameters on the tensile softening behavior. These slmulations can facilitate the
choice of micro-parameters for the most cost-etfective material design. 1998 Published by Elsevier
Science Ltd. All rights reserved.

INTRODLCTIO)\,

Cementitious materials fail through the propagation of cracks. Despite the incorporation
of steel reinforcements, many common types of failure, such as diagonal shear in deep
beams, punching shear in slabs, torsion of beams and pull-out of steel bars, still occur in a
brittle manner (Bazant, 1992a). Associated with brittleness is the well-known size effect
a reduction in equivalent material strength with increasing size (Bazant, 1986). To avoid
catastrophic failure and to incorporate the size e1fect into concrete design, the analysis of
fracture processes in concrete has become a very important issue.

In recent years, significant advancements have been made in numerical techniques for
the modeling of crack propagation in concrete and other quasi-brittle materials. These are
summarized in various publications including Elfgren (1989), Gerstle and Bazant (1992),
Bazant (1992b) and Bazant et al. (1994). Cracking in quasi-brittle materials are governed
by the bridging stresses at the crack face, \vhich is directly related to the tensile softening
relation of the material. The softening relation is often obtained directly through tensile
testing in a rigid frame (Peterson, 1981) or under close-loop control (Gopalaratnam and
Shah, 1985a; Li and Shah, 1994). Alternatively, it can be derived indirectly from a .I-based
fracture testing scheme (Li ('/ al.. 1985; Leung and Li. 1987).

When fibers are added to concrete in small volumes, the tensile strength is only slightly
affected. However. post-peak tensile softening occurs much slower, implying significantly
higher resistance to crack growth and hence a reduced brittleness. The softening behavior
of fiber reinforced concrete is aifected by the composite micro-parameters including the
properties of fiber. matrix and interface as well as the flber size, length, distribution and
volume fraction. Since adding fibers will also increase the material cost, it is highly desirable
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to find an optimal combination of micro-parameters for the best cost-performance. With a
large number of micro-parameters that can vary, the determination of the optimal com
bination based on empirical testing is very costly and hence impractical. An alternative
approach is to develop a theoretical model for the prediction of softening behavior from
micro-parameters. Simulations can be carried out to identify combinations of micro-par
ameters for high cost-effectiveness. A small number of experiments can then be carried out
within the "optimal range" to find the most cost-effective design.

The objective of the present paper is to develop a micromechanical model for the
softening behavior of steel fiber reinforced concrete, which is the most w'idely used fiber
reinforced cementitious composite in practice. The theoretical approach involves two major
steps: (i) derivation of crack bridging force for a single fiber in terms of micro-parameters
through the analysis of micromechanisms, (ii) derivation of complete tensile behavior
(including pre-peak and post-peak) from the bridging force and a given fiber distribution.
Since we are focusing on composites with small fiber volume fractions, tiber interaction
effects are not considered. After the model is verified at both the microscopic and macro
scopic levels with experimental results from the fiber pull-out test and the 4-point beam
bending test, numerical simulations are carried out to study the effect of various parameters
on the tensile softening behavior.

DERIVATION OF CRACK BRIDGING FORCE FOR A SINGLE FIBER

In most practical fiber reinforced cementitious composites, the fibers are distributed in
a quasi-random manner and hence can generally intersect with a crack at any angle. Figure
I shows a fiber lying at an angle to the crack. Crack opening will induce both pulling and
bending on the fiber. The crack bridging force P can then be separated into two components:
S, the debondingjpull-out component due to interfacial stresses along the fiber, and R, the
bending component due to reactions perpendicular to the fiber. The debondingjpull-out
component can be obtained from the analysis of fiber sliding along the interface. To find

'"

Fig. I. (a) Bending of fiber across crack. (b) Components of crack bridging force.
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the bending component, the fiber is treated as a beam bending on an elastic foundation
with variable properties along its length. [t should be noted that there is significant inter
action between the two components of the bridging force. The post-yielding behavior of
the steel fiber depends on the axial force along the fiber, which is related to fiber debon
ding/pull-out. On the other hand, the friction along the fiber interface, which governs fiber
debonding/pull-out, is a function of the normal force on the interface arising from fiber
bending. The modeling of matrix, fiber and interfacial behavior as well as their interactions
are described in the following.

DERIVATION OF EQUIVALENT FOUNDATION PROPERTIES

As described above, fiber bending is modeled by treating the matrix as an elastic
foundation. Determination of effective foundation properties was detailed in Leung and Li
(I 992). Here, only a brief account is provided. Let us consider a section of the composite
cut in a direction perpendicular to the fiber (Fig. 2). The section is assumed to be under
plane strain. In Fig. 2, II, the distance from the bottom of the fiber to the crack face, is a
function of the distance x along the fiber, For fl bel' reinforced concrete, where the interfacial
strength is weak, the interface is assumed to have debonded and under frictional contact in
the region close to the crack face, where there is significant reaction stress. Load is applied
to a horizontal line at the middle of the fiber cross section (Fig. 2). All points on the line
are constrained to have the same vertical displacement. Under applied force T' per unit
length, the displacement /If relative to the top of the plate (at distance HI from the flber
center, see Fig. 2) and the stress fleld around the fiber are computed to determine the
foundation stiffness and spalling criterion. HI, which affects the computed value of Uf' is
chosen based on physical considerations detailed in Leung and Li (1992). The location of
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Fig. 2. Determination of equivalent foundation properties.
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maximum principal stress in the plane of the cut section depends on the distance of fiber
from the free surface. When h is small, maximum stress is found below the fiber. For large
h, stress is maximum on the sides of the fiber near the two ends of the horizontal diameter.
Once the maximum principal stress reaches the local strength of the material, matrix spalling
will occur. When the fiber on an elastic matrix is bent at one end, it deflects downward at
some points but upwards at other points. Therefore, foundation stiffness values have to be
obtained for both cases with fiber pressing on the bottom or the top of its groove. Matrix
spalling, on the other hand, always occurs around the bottom half of the fiber so the
spalling criterion needs to be derived only for the case with the fiber pressing on the bottom
of its groove.

To find the variation of foundation properties along the fiber, fmite element analysis
of the above 2-D contact problem was carried out. Foundation properties against hir
(where r is the fiber radius) for different moduli ratio is shown in Fig. 3. In the figures,
(kmiEmh and (kmi Emh are, respectively, the normalized foundation stiffness when the fiber
is pushing on the bottom and the top of its groove. I:~p/(Jmr is the normalized applied
force/unit length on the matrix when spalling occurs, with (Jm being the local matrix strength.
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As expected, both the stiffness and spalling stress increase with hjr and approach asymptotic
values \vhen h;r becomes large.

Simulations (Leung and Li, 1992) have shown that the normalized foundation proper
ties vs hir curve shows little change for EdErn :;?: 6. For steel fiber reinforced concrete, ErlE,n
is higher than six, but the curves for E,! E,n 6 can be used. Physically. it means that when
Ed Em :;?: 6, the fiber can be considered rigid compared to the matrix.

To find the bridging I~)rce. the fiber is represented by beam elements. To model the
matrix. the volume of unspalled material from the midpoint of one beam element to the
midpoint of an adjacent beam element is represented by a discrete spring (Fig. 4) (Leung
and Chi, 1995). The spring properties can thus be obtained as the integral of foundation
properties from one midpoint to the next. Due to the sliding of fiber relative to the matrix.
the foundation properties for a given node vary as crack opening increases. To correctly
model the pull-out behavior. foundation properties are updated on each crack opening
increment. For a node that has displaced out of the matrix by more than half the clement
size, the spring underneath is removed (nodes one and two in Fig. 4). To analyze the present
problem, an alternative approach will be to keep the spring properties constant, but to re
mesh during the pull-out process to match the nodes of the beam elements to the location
of the springs. This latter approach is not adopted, due to the difficulties in keeping track
of loading history when partially yielded clements are re-meshed.

MODELING OF ELASTO-PLASTIC BENDING OF THE FIBER

When inclined steel fibers are pulled out of a cementitious matrix, yielding is commonly
observed (Naaman and Shah, 1976; Leung and Shapiro, 1998). To model elasto-plastic
fiber bending. several points have to be kept in mind. The elasto-plastic bending offiber is
affected by the axial tensile force arising from fiber stretching, which varies from point to
point along the fiber. For any single point along the tiber, the axial force varies with crack
opening. When the crack opens, the bridging force due to bending may decrease and any
yielded parts of the fiber may be elastically unloaded.
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Initial attempts to model the fiber with elasto-plastic iso-parametric elements are not
successful due to the divergence of results for most cases. We therefore decided to simplify
the analysis by using an approximate elasto-plastic beam clement and an assumed loading
history. The approach is briefly summarized below. Details can be found in Leung and Chi
(1995).

To develop a simple beam element for elasto-plastic bending of the fiber, a unique
moment··-eurvature (M-I() relation is assumed to exist for a given axial force. Such a relation
is obtained by first applying the axial force to the fiber cross-section and then determine
the moment corresponding to a given curvature. The M--I( curves are then approximated
by tri-linear relations. The first turning point of the curve occurs at a moment M 1 equal to
the average of the yield moment and the ultimate moment. After the turning point, the
slope of the second branch is reduced to one-fifth of the original. The third branch is a
horizontal line (or one with a very small slope to facilitate numerical computation) which
starts when the second branch reaches the ultimate moment. Such a tri-linear relation is
found to well represent MK curves for a wide range of axial force (froiD 060% of the
force for gross section yielding).

By replacing the exact M·I( with the tri-Iinear M-I( relation, a simple Iwo-node elasto
plastic beam element can be developed as a direct extension of the linear elastic beam
clement. The slope reduction of the MI( relation when it goes from one branch to another
is represented by an eq uivalent change in Young's modulus of the material. Once the
moment M 1 is reached at a certain node, modulus reduction (from initial value E 1 to
Ec EI/S) is assumed to occur over half an element length at each side of the node (Fig.
5). As shown in Fig. 5. for each element adjacent to the yielded node. half of it (the half
closer to the yielded node) will have a reduced tangential modulus E2 while the other half
maintains the initial modulus E1 • The tangential stiffness matrix for such an clement can be
easily calculated in terms of E j , E2 and the element dimensions (see Leung and Chi, 1995).
On further loading, yielding may occur on both nodes of the element. Then. the \vhole
element will be "softened" to a reduced tangential modulus Ec.

To simplify the analysis, an assumption is also made on the loading history. Let us
consider one-half of the fiber (Fig. 6(a)). For any increase in crack opening. the fiber should
actually follow the path AB in the figure, during which the axial and bending forces on the
fiber change simultaneously. To avoid dealing with such a complicated load history, we
assume the fiber to displace in path ACDB in the figure, i.e., the fiber is assumed to be fully
unloaded (AC), displaced along its length (CD) and then bent back to the curved
configuration (DB). [fyielding has not started, the two histories will give the same results.
After yielding, the assumed history is employed to simpli~y the analysis and its applicability
is assessed by comparison with more accurate results (see below). With the assumed history.
the elasto-plastic behavior at an element node under increasing crack opening is illustrated
in Fig. 6(b). The node. originally following a AfK curve for a given tensile load, is assumed
to unload completely in bending (following the original elastic slope). After the axial load
is changed, application of bending moment will cause the node to start yielding when an
M 1\ curve corresponding to the new axial load is reached. On subsequent bending, the
new curve will be followed.

With the above assumptions. elasto-plastic bending of fiber on an elastic foundation
is analyzed. Results are compared with those from the finite element program ADINA

+ M;+,UON:9
Tangential Modulus Reduced

to 1/5 the Initial Value
over half of the Element

Fig. S. Reduction in fiber stiffness around yielded node.
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history at any yielded node.

using isoparametric elasto-plastic elements. Figure 7 shows the comparison for two cases
where convergence in ADINA can be achieved to a reasonable degree. With different values
of interfacial friction T in the two cases, the axial stress distribution in the fiber and hence
the yielding behavior are different. From the figure, very good agreement can be obtained
up to the peak bridging force. In the post-peak regime, the prediction of the two models
are still within 10%. Convergence can no longer be achieved in ADINA after a small post
peak displacement, while our model can calculate the continuous softening behavior. In
the post-peak region where the largest difference in predictions can be observed, the
prediction from ADINA may not be very reliable since it is on the verge of divergepce.
Besides the advantage in terms of convergence, the approximate approach we developed is
also computationally far more efficient.

MODELING OF INTERFACIAL BEHAVIOR

Debonding and pull-out of steel fiber from a cementitious matrix have been analyzed
by many investigators in the literature (Gopalaratnam and Shah, 1995; Gao el al., 1988;
Stang el al., 1990; Naaman e1 al.. /991 ; Leung and Geng, 1995) using both strength-based
and energy-based approaches. In the present work, for simplicity, the interface is taken to
be purely frictional. This assumption is acceptable for steel fibers, which do not bond
strongly with concrete. In the pre-peak region, a constant interfacial friction can be assumed.
Once debonding is completed, the decrease of interfacial friction with further sliding can
be described by (Naaman eI al., 1991):
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exp - .1'1] - ~ exp [ L'I]
1'0(,1') = T,o(O)

1- ~ exp [ (L-S)'I]
(I)

where s is the sliding distance after complete debonding, and:;, IJ are parameters determined
from data fitting. In egn (I), the Poisson's effect has been neglected since it is considered
minor compared to other effects.

When the fiber is bent onto the matrix (as shown in Fig. I), the matrix reaction force
can affect the frictional resistance of the interface. Due to the 3-D nature of the problem,
the actual interaction is very complicated. In this work, we assume that the interfacial
behavior during the pull-out of the bent fiber is similar to that in a fiber pulled out under
uniform applied lateral stress. The latter problem has been studied in detail by Leung and
Geng (1995) and Geng and Leung (1997). The similarities and differences of the two
situations are illustrated in Fig. 8. In the following, we will briefly present an interfacial
damage model for pull-out under applied lateral stress. (Note: for full details, please refer
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Fig. 9. Schematic sl10lling the decomposition of friction into two components.

to Geng and Leung, 1997). Empirical modification of the damage model for the bent fiber
will then be discussed.

Leung and Geng (1995) has shown that the presence of lateral force can signiflcantly
affect the fiber debonding,tpull-out behavior. To account for such an effect, the interfacial
friction is decomposed into two components, ril) and flVe- r,o is the residual friction of the
interface (when there is no lateral stress acting), II the frictional coefficient and V e the
equivalent lateral stress. An experimental approach to obtain riO and flU, separately is
illustrated in Fig. 9. Fiber pull-out test is carried out under lateral compression, with a
biaxial loading set-up (Leung and Geng, 1995; Geng and Leung, 1997). During the pull
out test, the lateral compression is unloaded and re-applied for a number of times. The
curve formed by points after unloading represents thc variation of r lil with sliding distance
(s) for the given lateral compression. The difference between the upper and lower curves
allows the calculation of p as a function of s. Experiments have been carried out with
different values of lateral compression and the results arc reported in CJeng and I.eung
(1997). Here, the major findings from the experiments arc summarized.

For a given sliding distance s, values of both ',Il and II can be obtained as described
above. Plotting 'il) and JI against one another shows that the data for all ditTerent com
binations of sliding distance and lateral compression history appears to follow the same
line. Physically, this may be explained by the fact that both parameters are dependent on
the current status of the interface and a one-to-one correspondence therefore exists. Based
on the experimental results, an empirical relation bet\veen p and ril) can be obtained'

II (J.()X + (',oi21.2X) (2)

where 'dl should be in MPa.
The above finding has important implications. Since p is a function of ',0, if Til)(S) can

be found, the total interfacial resistance can be obtained for a given lateral compression V(.

To find ',l!' we assume that the damage (or smoothening) rate of the interface is a function
of its current state as well as the current lateral compression. In equation form, it is given
by:
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(3)

Based on experimental results obtained as in Fig. 9, riO vs S is first fitted with a
polynomial. DriO/os is then plotted against riO for different values of (Jv The results are shown
in Fig. 10 as solid lines. An interesting observation is that the curves for higher lateral
compression appear to be part of the (Je () curve, but shifted horizontally. Also, the
starting point of the curves for different (J, values appear to lie on a straight line. The dashed
curves in Fig. 10 are obtained by horizontally shifting the (Jc = 0 curve., with the starting
point of each curve lying on a straight line. The good agreement between the shifted and
experimentally derived results (dashed and solid curves, respectively) justify the use of a
simple shifting scheme to obtain Drjo/Ds vs riO curves for intermediate (Jc values.

With arlo/Ds expressed in terms of r,o and (Je, rj()(s) after any lateral loading history can
be calculated from:

d( (4)

The above results are obtained for the case with lateral compression on both sides of
a fiber. Also, although the compression may change in magnitude, it stays uniform along
the fiber length. For the bent fiber considered in this paper, lateral stress is increased on the
side with the fiber pushing onto the matrix but decrease on the other side. However. from
equilibrium considerations, there would be a net increase in lateral stress (or radial stress)
on the fiber interface. Since the bending component is small before the whole fiber starts to
pull out. the effect of lateral stress is neglected before the fiber is fully debonded. During
fiber pull-out, the etl'eCI of lateral stress is considered in an approximate manner by assuming
an equivalent lateral compression (J,e given by:

(Jee = c(N2r) (5)

where IV is the average reaction force per unit length acting on the tIber and r is the fiber
radius. c is an empirical factor to be obtained from the pull-out test result. Note that (Jce is
assumed to be the same on every point of the tiber interface, and so every point along the
interface will degrade to the same extent. This assumption significantly reduces the amount
of computation required when each point on the interface is subject to different lateral
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stress and degrade to different extents. The adequacy of the assumption can be assessed by
comparing model prediction with experimental results, which will be described in the next
section.

PREDICTION OF CRACK BRIDGING FORCE

With the modeling approach and assumptions described above, this section will provide
a brief summary of the computational steps. Before one can compute the crack bridging
behavior, the composite micro-parameters need to be known. The Young's moduli and
yield strength of the steel fiber are usually supplied by the fiber manufacturer. For concrete,
modulus can be found from standard cylinder test. The determination of spalling strength,
am' however, is not as straightforward. Being the strength of a very small amount of matrix
material around the fiber, am is much higher than the macroscopic tensile strength obtained
from specimens with significantly larger flaws. Since it is not possible to measure am directly,
its value is obtained by fitting the experimental pull-out results. In other words. am is a
fitting parameter in the model. though it possesses a clear physical meaning. When spalling
occurs. the matrix always break ofr in small chunks of a certain size. In other words, when
the finik element model for the matrix is refined to provide more accurate stress and
displacement results. the spalling size should be kept constant. If elements are smaller than
the spalling size, several elements will spall together when the total force acting on them is
greater than their total spallmg resistance. In the model the spalling size is chosen to be 0.4
mm. This is within the range of size for small matrix pieces that crumble off during the
experiment.

The interfacial parameters for steel fiber include the interfacial friction, and all the
other parameters in eqn (I) governing the softening rate of the interface. All these par
ameters are obtained by fitting eqn (I) to the experimental pull-out curves for O' (i.e., pull
out curve for a fiber perpendicular to the crack surface). In the present research program.
the same concrete composition and fiber arc used in (i) the pull-out tests under lateral
compression, based on which eqns (2) ·(4) are derived. and (ii) pull-out tests on inclined
fibers for the verification of the rnicromechanical modeL which will be presented later. We
therefore assume the relation between 'iO and II as well as the shifting scheme in Fig. 10 to
hold for the inclined fiber pull-out tests. Then, c in eqn (4) is the only parameter not known.
As discussed above, it is left as a fitting parameter in the model.

For the steel fiber. the Young's modulus is well known. The yield strength is supplied
by the manufacturer. but can also be easily obtained in a standard tensile test with a wire
testing fixture.

To compute fiber pull-out behavior. all the known material parameters, and stipulated
values of am and c. are input into the program. Also, the numerical values of normalized
foundation properties in Fig. 2 need to be input. The first step of the analysis is then to
relate the fiber displacements 1(, and ii (in directions along the perpendicular to the tiber)
to the crack opening. Also, the free length of fiber (If) beyond the matrix foundation needs
to be found. An approach first proposed by Morton and Groves (1974) is employed. The
fiber is separated inlO two free bodies at the middle of the crack where the point of inflection
is located (Fig. II). Based on simple geometry and trigonometry, 1(,. () and I, can be
expressed in terms of the half crack opening. II. and the fiber radius. r, as:

If" =, II cos (/

I, = rtan(/+lIcos()

(5)

(6)

(7)

where () is the angle between the fiber and the normal to the crack plane. In the expression
for II" the first term is contributed by the part of fiber separated from the matrix on bending
(Fig. 11) and the second term is due to displacement of fiber into the crack (i.e .. 1(,).
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bending.

With 11" known, the debonding/pull-out component f:1b can be computed. Before the
whole fiber is debonded, a constant friction Tj is assumed. Fdb is then related to 11" through:

(8)

When debonding of the fiber is completed (i .e., fiber pull-out is just about to start),
the initial residual friction is given by:

(9)

where (Jce can be obtained from the reaction force as a result of fiber bending. Since TiO(O)

and 11(0) are linearly related to one another, eqn (9) allows the determination of T,o({l).
During fiber pull-out, TiO(S) is obtained from eqn (3). At each step, the additional

change in Tjo(S) is computed based on the (Joe value at the end of the previous step. Knowing
the relation between TIO(S) and p(s), the total interfacial friction Ti(S) can be easily obtained.
The pull-out force F:1h is the product of r;(.\') and the remaining embedded surface area of
the fiber.

Once TJ.I) and F~lh are known. the axial force at any node along the fiber can be
calculated. The appropriate At h' relation can then be prescribed. The bending force FB

required to produce a lateral displacement 6 for a free length If offiber can then be found.
At each step, for computational convenience, the fiber is assumed to unload in bending,
pulled along its length and bent again. The residual displacement and moments along the
fiber therefore needs to be documented. Due to the clastic unloading assumption, the
bending analysis at each step always starts with an elastic beam. In the computational
algorithm, displacement is applied to the beam until yielding occurs at a particular point
of the beam or the matrix foundation spalls. The global stiffness is then updated. Further
displacement is applied until the occurrence of the next yielding or spalling, when the
stifliless is again updated. The process is repeated until the required displacement is reached
at a force FB. Knowing both F:1h and F1I , the total bridging force is calculated as the sum of
their components along the crack opening direction.

In Fig. 12, pull-out curves obtained from the model are compared with experimental
results on steel fiber pulled out at O. 30 and 60 . The three plots on the left hand side are
the experimental results while the right hand side shows the theoretical prediction together
with one representative experimental curve for each case. In the modeL Gill and c are taken
to he 150 MPa and 0.2, respectively. In the experiment, the compliance of fixtures greatly
increase the measured displacement. The model results have therefore been corrected by
adding to the displacement a value Uron kP, where P is the total bridging force. The value
of k is obtained from the peak displacement and load values for the 0 case. Based on Fig.
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Fig. 12. Experimental pull·out curves (lefi) and model predictions (right. dash linel.

\2, one can see that the present model can correctly predict both the peak pull-out load
and the post-peak softening behavior for different inclination angles. This is a significant
improvement over previous models (Li el aI" 1990; Ouyang el al., 1994) which, despite the
use of fitting parameters, can only predict the peak pull-out load.

DERIVATION OF SOFTENING BEHAVIOR OF FIBER REINFORCED CONCRETE

To derive the complete tensile behavior, the first step is to calculate the averaged
bridging force provided by all the fibers. Assuming low volume fraction, the interaction
effects between closely spaced fibers can be neglected. In this paper, we assume a 2-D
random fiber distribution. LeI's define L as the embedded length of the fiber when the crack
opening is zero. Since fiber pull-out always occurs at the shorter side, L will be uniformly
distributed between 0 and Lr/2 for all the fibers bridging the crack. The probability density
function of L is then given by pILl 2/1..,. Also, if the angle () is uniformly distributed from
oto n/2, the probability density function p(O) is equal to (2;n) cos 0 (Aveston and Kelly,
1973: Li el al., 1991 j. The average bridging force for all fibers is then given by:

F(u)
I
,·;r} fln,} P(L, 1/, ujp(Ll dL(p(()) dO

.... rI U (..1.'0 J ( 10)

where P(L, 0, u) is the pull-out force at the given u for a fiber with original embedded length
L and inclination 1/.

With the model for bridging force developed above. P(L, (I, u) can be computed. To
illustrate the computation of averaged bridging force, the fiber length is taken to be 20 mm.
The initial embedded length can hence range from 0 to 10 mm. To numerically evaluate
the double integral in eqn ( 10), 10 discrete values of L (1 mm apart) and 18 values of 1/ (5
apart) are employed. Then, for a composite with volume fraction VI, the averaged crack
bridging stress O"B given by:
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( II )

The result of averaged crack bridging stress for VI ~= 0.5, 1.0 and 1.5"/;, are shown in
Fig. 13. The corresponding softening behavior is shown in Fig. 14. For small volume
fraction, the tensile strength of the concrete is assumed to stay the same. /\I'ter cracking.
the stress is assumed to drop from the tensile strength to the value corresponding to the
peak fiber bridging stress (see dotted lines in Fig. 14). Note that this modeling approach is
only valid for small I'" when the maximum bridging stress is lower than the matrix tensile
strength. Otherwise, multiple cracking will occur and the tensile behavior will have a
pseudo-ductile branch before the peak is reached. This pseudo-ductile case is preferable
but is not easy to be achieved with low cost fibers and conventional casting techniq ues.

To assess the validity of the derived softening behavior, it is implemented into a
computational framework. The predicted behavior of a beam in four-point bending is then
compared with experimental results. In the analysis. the uncracked part of the member is
represented by eight node quadratic elements and the bridging force 111 the crack is modeled
by a bar element with a force vs displacement relation corresponding to the softening
relation in Fig. 14. Note that the discrete cracking approach employed here is only applicable
when the crack location and direction are both known beforehand. Otherwise. a smeared
cracking approach would be required.

Four point bending tests are carried out with fiber reinforced mortar beams of 457.2
mm (length) x 114.3 mm (depth) x 76.2 mm (width). With 20 mm fibers, three fiber volume
fractions (0.5. 1.0 and J .5°;;)) arc employed. The mortar composition (w/c<'s 0.5: I : 2) is
the same as that employed in the fiber pull-out test. In the specimen preparation, the mold
is filled and vibrated in several layers to produce an approximately 2-D random fiber
distribution. The experimental results. in terms of applied load vs mid-span displacement,
are shown as broken lines in Fig. 15. The solid line in the figure are the results from finite
element analysis. Note that the experimental results exhibit a significantly higher pre-peak
displacement than the model predictions. This nM)' be due to the initial seating of the beam



Micromechanical modeling of softening behavior in steel fiber reinforced cementitious composites 4219

Volume Fraction = 0.5%

.\

5000.' i.:,:=='-:':"~~_-~'~'::

"0 .(
810000
..J

tti

~
00 1 2 3 4

Mid-Span Displacement (mm)

.-:. ..._~-

Volume Fraction =1.0%g15000
"0
810000
..J

tti 5000'
~ ~

°0u--1~-2~-~3- 4

Mid-Span Displacement (mm)

Volume Fraction = 1.5%g15000
"0
810000

..J 5000.' \. '"".'"~:-::c:..-::::-:~7.~_: :-""'_"'""J --~
00 1 2 3 4

Mid-Span Displacement (mm)
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as well as local deformation at the supports. The peak load as well as the post-peak behavior
are, however, in good agreement with experimental results.

PARAMETRIC STUDIES

The agreement of experimental results and model predictions in Fig. 15 supports the
validity of the micromechanical modeling approach. The actual power of the approach.
however. lies in the ability to study the etfects of various parameters on the softening
behavior. As illustrations of this important point averaged bridging force are computed
for various combinations of micro-parameters. The results are shown in Figs 16-18. Note
that for small volume fractions. the softening behavior is directly related to the averaged
bridging force [refer to eqn (II) and Fig. 14]. The trend of averaged bridging force is
therefore a direct indication of the trend of the softening behavior.
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Fig. 16 Effect of fiber length 011 meraged fiber bridging force.
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Figures 16 and 17 show. respectively, the effects of fiber length and interfacial friction.
The middle curve in both plots arc the same. As expected, a longer length or higher
interfacial friction leads to higher averaged bridging force. An interesting observation is
that increasing the interfacial friction by 50'% (relative to the middle curve) gives roughly
the same effect as increasing the fiber length by 5()(>'~). Close comparison of the curves reveals
that a 50% increase in friction actually gives rise to a higher F-u curve than a 50(>,;(, increase
in length. Since increasing the fiber length may also lead to ,""orkahility problems, the
simulation indicates that within the range of micro-parameters being studied, roughening
the fiher surface (to increase the frietion) is the better way to improve composite behavior
than increasing the fiber length.

Figure IS shows the effect of varying the fiber yield strength. By increasing the yield
strength from O.X· 1.2 CiPa, the bridging force reaches ahout the same peak but drop much
faster with increasing fiber yield strength, The pull-out work (or energy absorption during
the pull-out process). which is given by the total area below the Fu curve. therefore
decreases ,""ith fiber yield strength. This interesting observation can be explained as follows.
In a random fiber composite. most fibers are lying at an angle to the crack. As the crack
opens, fiber bending (as illustrated in Fig. I) can lead to matrix spalling. With a higher
fiber yield strength. rnore matrix spalling can occur. leading to a more rapid decrease in
pull-out resistance. The simulated results are consistent with pull-out test results by Leung
and Shapiro (1998) (Fig. 19). In the tests. fibers of different yield strength are embedded at
different angles in the pull-out specimens. For each pull-out result, the pull-out work is
calculated from the total area under the experimental curve. Because the fibers with differcnt
yield strength also exhibit different pull-OUl behavior at zero degree, the pull-out work for
the zero degree case is subtracted from the inclined fiber cases, The net pull-out \Nork is
called the bending component. which reflects the efrcct of yield strength if all the fibers have
the same interl~tcial behavior. From the bending component of pull-outwork shown in
Fig. 19. it is clear that an optimal yield strength (for maximum pull-out work) exists
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between 0.635 and 0.954 (JPa. Increasing the yield strength from 0.8 1.2 GPa, as in the
simulation, should therefore result in a decrease in pull-out work.

C()NCL.USIO!'<

In the present work, a micromechanical model is developed to derive the softening
behavior of fiber reinforced cementitious composites. A key step in the modeL the derivation
of crack bridging force for a single fiber, is verified by fiber pull-out test results. The
derived softening behavior is implemented into a numerical framework for the prediction
of component behavior. Good agreement between model prediction of beam bending
behavior and experimental results provide further support to the validity of the micro
meehanical modeling approach. With the micromeehanical model, parametric studies of
softening behavior are carried out. Within the range of parameters being studied, it is found
that increasing the interfacial friction is a better alternative to improving material behavior
than increasing fiber length. Also, beyond a certain point. increasing the Jlber yield strength
is not desirable. The simulation results demonstrate the potential of micromcchanical
models as a useful tool in material development and design.
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